Abstract

Soils annually emit between 6.8 and 7.9 Gt CO2 equivalents, mainly as CH4 from intact peatlands and from rice agriculture; as N2O from unmanaged and managed soils; and as CO2 from land-use change. Methane emissions attributable to other wetlands add another 1.6–3.8 Gt CO2 equivalents. From a global standpoint, N2O from unmanaged soils and CH4 from peatlands and other wetlands make soils naturally net greenhouse gas emitters. In addition, the storage of carbon in soils and the fluxes of CH4 and N2O have been changed by anthropogenic effects towards emission rates 52 to 72% above those under natural conditions before the dawn of intensive agriculture and land-use change. Land-use changes on mineral soils induced most of the recorded losses of soil organic matter (SOM), but there is evidence that proper agricultural management of soil resources is able to recover some of these losses and to maintain soil functions. However, the discrepancy between so-called ‘sequestration potentials’ and the measures already adopted is amazingly large. Globally, only about 5% of the cropped areas is managed according to practices such as no tillage or organic farming. The contribution of soil loss by erosion, desertification and sealing to global oxidative SOM losses is uncertain; however, in the case of soil erosion, it is considered to be a major factor in global SOM decline. Mitigation options calculated for SOM restoration, reduced CH4 and N2O emissions are able to alleviate mean annual emissions by 1.2 to 2.9 Gt CO2 equivalents, mainly as a result of carbon sequestration, which is the most efficient measure for the next few decades. In the longer term, however, the large potential for reducing CH4 and N2O emissions outweigh the finite capacity of soils to recover C. Integrated assessment of net greenhouse-gas fluxes is key for evaluating management practices aimed at reducing overall emissions. From the viewpoint of climate change and taking into consideration the mean fluxes of CO2, CH4 and N2O, peatland protection is more favourable than peatland cultivation in the long term. The most important gaps in our understanding appear to be with regard to estimating fluxes along with soil erosion and desertification processes, in the extent of peatland cultivation; the role of black carbon formation, natural ‘background’ sequestration rates of undisturbed soils; and the net response of soils, particularly in cold regions, to global warming. With regard to the societal perception of soil contributing to the global cycling of greenhouse gases, it is important to emphasize that significant proportions of the emissions are inevitably linked to intensive agriculture.

Get full access to this article

Purchase, subscribe or recommend this article to your librarian.

Information & Authors

Information

Published In

cover image Geological Society, London, Special Publications
Geological Society, London, Special Publications
Volume 2662006
Pages: 23 - 44

History

Published: 2006

Permissions

Request permissions for this article.

Authors

Affiliations

Jens Leifeld
Research Station Agroscope Reckenholz-Taenikon ART, Air Pollution/Climate Group, Reckenholzstrasse 191, 8046 Zürich, Switzerland (e-mail: [email protected])

Metrics & Citations

Metrics

Article Usage

Downloaded 11 times

Citations

Export citation

Select the format you want to export the citation of this publication.

Citing Literature

View Options

Get Access

Login Options

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF/ePub

View PDF/ePub

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share on social media

Suggested Content

The Lyell Collection uses cookies

The Lyell Collection uses cookies. By continuing to use it you are agreeing to our use of cookies. Find out more.

Accept
×